Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36850589

RESUMO

Accuracy becomes progressively important in the wake of development in advanced industrial equipment. A key position sensor to such a quest is the optical linear encoder. Occasionally, inappropriate mounting can cause errors greater than the accuracy grade of the optical linear encoder itself, especially for open-type optical linear encoders, where the mounting distance between the reading head and main scale must be accurately controlled. This paper analyzes the diffraction fields of a traditional scanning reticle made by amplitude grating and a newly designed combined grating; the latter shows a more stable phase in mathematical calculation and simulations. The proposed combined gratings are fabricated in a laboratory and assembled into the reading heads. The experimental results indicate that the mounting tolerance between the reading head and the main scale of the optical linear encoder can be improved.

2.
Sensors (Basel) ; 23(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679661

RESUMO

Optical encoders are widely used in accurate displacement measurement and motion-control technologies. Based on different measurement methods, optical encoders can be divided into absolute and incremental optical encoders. Absolute linear encoders are commonly used in advanced computer numerical control (CNC) machines. The subdivision error within one signal period (SDE) of the absolute linear encoder is vital to the positioning accuracy and low velocity control of CNC machines. In our paper, we study the working principle of the absolute linear encoder. We proposed two methods for reducing the SDE of the absolute linear encoder, a single-field scanning method based on the shutter-shaped Moiré fringe, as well as a method for suppressing harmonics through a phase shift of index grating. We established a SDE measuring device to determine the absolute linear encoder's SDE, which we measured using a constant-speed approach. With our proposed methods, the SDE was reduced from ±0.218 µm to ±0.135 µm, which is a decrease of 38.07%. Our fast Fourier transformation (FFT) analysis of the collected Moiré fringe signals demonstrated that the third-, fifth-, and seventh-order harmonics were effectively suppressed.


Assuntos
Registros , Tecnologia , Movimento (Física) , Cintilografia
3.
Sensors (Basel) ; 22(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458961

RESUMO

Optical linear encoders are widely used in manufacturing. They are accurate and have a relatively high resolution and good repeatability. However, there are a lot of side effects, which have an inevitable impact on the performance of an encoder. In general, the majority of these effects could be minimized by the appropriate design of an encoder's reading head. This paper discusses the working principle of and commonly occurring errors in optical linear encoders. Three different mechanical designs are developed and implemented in the experimental reading head of the linear encoder in order to evaluate how mechanical construction influences the displacement measurement accuracy and total performance of the encoder.


Assuntos
Leitura , Óptica e Fotônica
4.
Sensors (Basel) ; 21(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430333

RESUMO

Linear displacement measuring systems, like optical encoders, are widely used in various precise positioning applications to form a full closed-loop control system. Thus, the performance of the machine and the quality of its technological process are highly dependent on the accuracy of the linear encoder used. Thermoelastic deformation caused by a various thermal sources and the changing ambient temperature are important factors that introduce errors in an encoder reading. This work presents an experimental realization of the real-time geometric and thermal error compensation of the optical linear encoder. The implemented compensation model is based on the approximation of the tested encoder error by a simple parametric function and calculation of a linear nature error component according to an ambient temperature variation. The calculation of a two-dimensional compensation function and the real-time correction of the investigated linear encoder position readings are realized by using a field programmable gate array (FPGA) computing platform. The results of the performed experimental research verified that the final positioning error could be reduced up to 98%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...